170

ROCHER, A. M. & JOUFFREY, B. (1972). In Electron Microscopy
1972. Inst. Phys. Conf. Ser. No. 14, pp. 528-529. London, Bristol:
The Institute of Physics.

SCHNEIDER, J. R., HANSEN, N. K. & KRETSCHMER, H. (1981).
Acta Cryst. A37, 7T11-722.

SMART, D. J. & HUMPHREYS, C. J. (1980). In Electron Microscopy
and Analysis 1979, edited by T. MULVEY. Inst. Phys. Conf. Ser.
No. 52C, Chap. 4, pp. 211-214. London, Bristol: The Institute
of Physics.

SNow, E. C. (1968). Phys. Rev, 171, 785-789.

STEVENS, E. D. & COPPENS, P. (1976). Acta Cryst. A32, 915-917.

Acta Cryst. (1990). Ad6, 170-175

FORM FACTORS AND CHARGE DENSITY OF ‘COPPER

TABBERNOR, M. A. (1989). MPhil thesis, Wolverhampton Poly-
technic, England.

TAKAMA, T. & SATO, S. (1982). Philos. Mag. B45(6), 615-626.

THIRY, P., CHANDESRIS, D., LECANTE, J., GuiLLoT, C.,
PINCHAUX, R. & PETROFF, Y. (1979). Phys. Rev. Lett. 43,
82-85.

THoMAS, L. E., SHIRLEY, C. G., LALLY, J. S. & FISHER, R. M.
(1974). In High Voltage Electron Microscopy, pp. 38-47. London,
New York: Academic Press.

WAKOH, S. & YAMASHITA, J. (1971). J. Phys. Soc. Jpn, 30(2),
422-427.

Corrections to Tabulated Anomalous-Scattering Factors

By LYNN KIiSSEL

Test Planning and Diagnostics Division, Sandia National Laboratories,
Albuquerque, New Mexico 87185-5800, USA

AND R. H. PrATT

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Received 23 June 1989; accepted 14 September 1989)

Abstract

Z-dependent energy-independent corrections to the
relativistic anomalous-scattering factors tabulated by
a number of workers are given. These corrections are
most significant for medium-Z and high-Z atoms,
but are experimentally observable even in low-Z ele-
ments. Examples of use of the correction factors are
provided for the real anomalous-scattering factor f’
and for the differential elastic scattering cross section
do/da.

Introduction

We give here a tabulation (Table 1) of the correction
factors 6f" which should be added to the relativistic
anomalous-scattering factors f° of Cromer &
Liberman (1970a, b, 1976, 1981), Cromer (1974, 1983)
and Henke, Lee, Tanaka, Shimabukuro & Fujikawa
(1981, 1982), as discussed by Parker & Pratt (1984)
and more recently, and in greater detail, by Smith
(1987). This issue does not arise in a non-relativistic
theory, in which f” vanishes in the high-energy limit.
The correction, of relativistic origin, is Z dependent
but energy independent; it is most significant in
heavier elements. It has been observed experi-
mentally, as Parker & Pratt (1984) noted in mention-
ing the systematic discrepancies which had been
reported by Creagh (1975, 1980); more extensive
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comparisons and references are given by Smith
(1987).

The problem arose from Cromer & Liberman’s use
of a dipole approximation in estimating relativistic
corrections to the high-energy limit of forward scatter-
ing. Higher multipoles in fact become important at
high energy. Jensen (1979, 1980) identified this as a
problem, but did not succeed in calculating the cor-
rections. In fact, (5/3)(E./mc?), enumerated in
Table II of Cromer & Liberman (1970b), is better
replaced by ( E,./ mc?), where E,, is the total binding
energy of the atomic electrons. The later Cromer
(1983) program, incorporating the first Jensen (1979)
term, should not be used unless the Jensen term is
then explicitly subtracted out. The correct high-
energy limit had actually been obtained earlier in
other contexts. It appears to be contained, for
example, in the relativistic modified form-factor
approximation of Franz (1936). The Coulomb K-
shell result was given by Levinger & Rustgi (1956),
more generally by Goldberger & Low (1968) and
Florescu & Gavrila (1976). The general result for a
central potential was obtained by Levinger, Rustgi &
Okamoto (1957). Beginning with the relativistic dis-
persion relation, Wang (1986) derived a form of the
reletion accurate to order (Za)? suitable for numeri-
cz' evaluation.

1{umerical multipole calculations based on the
second-order S matrix began with the work of Brown,
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Table 1. High-energy-limit corrections to the real part of the anomalous-scattering factor f'(w) for neutral atoms

The Z-dependent energy-independent correction 8f' = f'(20) — f¢; (00), where f¢;(c0) is the high-energy limit of the real anomalous-
scattering factor given by Cromer & Liberman (19705, 1981). The high-energy limit of the S-matrix anomalous-scattering factor for
neutral atoms is taken as f7(0) = g(0) — Z (see Table 2), whre Z is the atomic number and g(0) is the value of the relativistic modified
form factor at zero momentum transfer as computed y Sci:aupp, Schumacher, Smend, Rullhusen & Hubbell (1983).

z g(0) S(e0) Se(=) of
1 1-000 0-000
2 2-000 0-000
3 3-000 0-000 —0-001 0-001
4 3-999 —0-001 —0-001 0-000
5 4-999 —0-001 —0-002 0-001
6 5998 —0-002 —0-003 0-001
7 6:997 —0-003 —0-005 0-002
8 7-996 —0-004 —-0-007 0-003
9 8:995 -0-005 —-0-009 0-004
10 9-993 -0:007 —-0-011 0-004
1 10-992 —0-008 —-0-014 0-006
12 11-990 -0-010 —0-018 0-008
13 12-987 -0-013 —~0-021 0-008
14 13-985 -0-015 —0-026 0-011
15 14-982 —0-018 —-0-030 0-012
16 15-979 —0-021 —-0-035 0-014
17 16-976 —0-024 —0-041 0-017
18 17-973 —0-027 ~0-047 0-020
19 18-969 —0-031 —0-053 0:022
20 19-965 —0-035 —-0-060 0-025
21 20-960 —0-040 —0-068 0-028
22 21-956 —0-044 -0-075 0-031
23 22-951 —-0-049 —0-084 0-035
24 23-946 —0-054 —-0-093 0-039
25 24-940 —0-060 —0-102 0-042
26 25-935 —0-065 =0-113 0-048
27 26929 -0-071 -0-123 0-052
28 27-922 —0-078 -0-135 0-057
29 28-915 —0-085 —0-146 0-061
30 29-908 —-0-092 -0-159 0-067
31 30-901 —0-099 -0-172 0-073
32 31-893 —-0-107 —-0-186 0-079
33 32-885 -0-115 —-0-200 0-085
34 33-877 -0-123 -0-215 0-092
35 34-868 -0-132 —0-231 0-099
36 35-859 —0-141 —-0-247 0-106
37 36-850 —0-150 ~0-264 0-114
38 37-840 —0-160 -0-282 0-122
39 38-830 -0-170 —0:300 0130
40 39-819 —0-181 -0-319 0-138
41 40-809 -0-191 TT=07338 0-147
42 41-797 —0-203 -0-359 0-156
43 42-786 -0-214 -0-380 0166
44 43-774 —0-226 —-0-401 0-175
45 44-762 —0-238 —0-424 0-186
46 45-749 —0-251 -0-447 0-196
47 46-736 —0-264 —0-471 0-207
48 47-723 -0-277 —0-496 0-219
49 48-709 -0-291 —-0-521 0-230
50 49-695 —0:305 —0-547 0-242

Peierls & Woodward (1955), Brenner, Brown &
Woodward (1955), and Brown & Mayers (1956, 1957),
and has continued in the work of Cornille &
Chapdelaine (1959), Johnson & Feiock (1968) and
Johnson & Cheng (1976), and more recently in the
Pittsburgh group (e.g. Kissel, Pratt & Roy, 1980;
Kane, Kissel, Pratt & Roy, 1986). Lin, Cheng &
Johnson (1975) numerically investigated the import-
ance of fourth-order terms of the S matrix for scatter-
ing in helium. These S-matrix predictions currently

z £(0) f() Se() o
51 50-680 -0-320 ~0-575 0-255
52 51-665 -0-335 -0-602 0-267
53 52:650 ~0-350 ~0+631 0-281
54 53.634 -0-366 ~0-660 0-294
55 54-618 -0-382 -0-690 0-308
56 55-602 -0-398 -0-721 0323
57 56585 -0-415 -0-753 0-338
58 57-568 —0-432 -0-786 0-354
59 58-550 ~0-450 -0-819 0-369
60 59-532 ~0-468 ~0-854 0-386
61 60-513 ~0-487 ~0-889 0-402
62 61-494 ~0-506 ~0-925 0419
63 62-475 -0-525 -0-962 0437
64 63-455 ~0-545 ~1-000 0-455
65 64-435 -0-565 -1-039 0-474
66 65-414 ~0-586 ~1-079 0-493
67 66-393 ~0-607 ~1-119 0-512
68 67-371 -0-629 ~1-161 0-532
69 68349 -0-651 -1-204 0-553
70 69-326 -0-674 -1-248 0-574
7 70-303 -0-697 -1-293 0-596
72 71-279 -0-721 ~1-338 0-617
73 72:255 -0-745 ~1-385 0-640
74 73-230 -0-770 ~1-433 0-663
75 74-205 -0-795 ~1-482 0-687
76 75-179 -0-821 ~1-532 0711
77 76-153 -0-847 ~1-583 0736
78 77-126 ~0-874 ~1-636 0762
79 78-099 -0-901 ~1-689 0788
80 79-071 -0-929 ~1743 0-814
81 80-043 -0-957 ~1-799 0-842
82 81-014 -0-986 ~1-856 0870
83 81-985 -1-015 -1:914 0-899
84 82:955 -1-045 -1-973 0928
85 83-924 ~1-076 -2:033 0957
86 84-893 -1-107 ~2-095 0988
87 85861 -1-139 ~2:157 1-018
88 86-829 —1171 -2221 1-050
89 87-796 ~1-204 -2:287 1-083
90 88-762 -1-238 -2:353 1-115
91 89-728 -1272 -2:421 1-149
92 90-694 ~1-306 ~2:490 1-184
93 91-658 ~1:342 ~2:561 1-219
94 92:622 -1-378 -2:633 1-255
95 93-585 -1-415 -2-707 1-292
96 94-548 -1-452 -2-782 1-330
97 95-510 ~1-490 -2:858 1-368
98 96-471 ~1-529 -2.936 1-407
99 97-432 ~1-568
100 98:391 -1-609

represent the best available calculations for atomic
scattering of X-rays and low-energy y-rays. They
yield the amplitude for elastic scattering of a pho-
ton from a specified atomic subshell, within the
framework of external-field quantum electro-
dynamics and a description of independent bound
atomic electron states in a relativistic self-consistent
central potential. The S-matrix approach is based on
Furry’s extension of the Feynman-Dyson formula-
tion of quantum electrodynamics, in which the
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Table 2. Forward-angle scattering amplitudes for
selected neutral-atom subshells demonstrating the
approach of the S-matrix amplitude (values at finite
energy) to that predicted by the modified relativistic
form-factor approximation (value at infinite energy)

The quantity Aw/ ¢ indicates the ratio of the photon energy to the
corresponding electron binding energy. The numbers in paren-
theses indicate the associated power of ten.

Sub- ho
shell (keV)  fw/e ReA(w,0) Im A(w,0)
“Ne K 1-66 2 -2-3179 1-4636

414 5 -2:2339 2:8813 (—1)
8-28 10 -2:0923 7-3756 (=2)
16:6 20 -2-0283 1-7325 (=2)
414 50 -2:0020 23115 (-3)
82-8 100 -1-9972 4-8181 (—4)
166 200 -1-9958 1-0102 (—4)
248 300 —-1-9954 42000 (—5)

0 ) -1-9952 0-0
¥Kr Ly 175 10-3 —1-8489 4-4193 (-2)
336 20 -1-9800 89590 (-3)
84-0 50 —1-9866 8-7051 (~4)
168 100 ~1-9865 1-5384 (—4)
336 200 -1-9863 31638 (=5)
504 300 ~1-9863 1-4202 (=5)

© © —1-9862 0-0
*Xe Ny 299 50 —6-4579 2:1764 (-1)
598 100 —5-8049 46496 (-2)
12:0 200 —5-9865 7-5864 (~3)
17-9 300 ~5-9926 2:3667 (-3)

0 © -5-9942 0-0
8%Rn K 197 2 -1-8832 8-1459 (—1)
492 s -1-7590 20552 (—1)
984 10 -1-7089 9-0955 (~2)
1970 20 ~1:6929 42711 (-2)
4920 50 —1-6895 1-7460 (-2)
9840 100 -1-6892 8-6902 (~3)

o © -1-6987 0-0

interaction of electrons and positrons with the atomic
field is included in the unperturbed Hamiltonian.

We illustrate in Table 2 that numerical S-matrix
calculations appear at forward angles to approach
the relativistic modified form factor at high energy;
no proof of this fact has yet been given. Our results
tabulated in Table 1 are in fact based on the relativistic
modified form-factor approximation, as computed by
Schaupp, Schumacher, Smend, Rullhusen & Hubbell
(1983), tested against S-matrix calculations in
selected cases (see also Kissel et al., 1980).

Examples

We may illustrate the use of our table and the sig-
nificance of the correction with a couple of examples.
We begin by noting that the anomalous-scattering
factors are conventionally defined as the real energy-
dependent angle-independent quantities f° and f”
such that for a given atom

L @0 = AN+ @i F, ()

where N is the number of bound electrons in the
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atom (for a neutral atom N =Z2), and do(w, @)/d2
is the unpolarized elastic-scattering cross section at
photon energy #w and scattering angle @ (the angle
between the incident and scattered photon direc-
tions); @ =26, where 6 is the Bragg angle. Note that
the anomalous-scattering factors are defined at for-
ward angle. It is known that, in a relativistic theory,
the high-energy limit for forward scattering from
bound electrons is not exactly (Nro)?, so that f(c0),
as defined above, is not equal to zero (e.g. Levinger
et al., 1957). What we are listing in Table 1 is the
difference of f'(c0) from the value f' (©) computed
by Cromer & Liberman:

8f' = f'(00) = fer(o0). (2)

This difference arises from the inclusion of higher
multipoles. At finite energy, the corrected value of
the real anomalous forward-angle scattering factor is
given by

f(@)=felw)+of 3)

where ft (w) is the value predicted by Cromer &
Liberman (1970aq, b, 1976, 1981), Cromer (1974, 1983)
or Henke et al. (1981, 1982), and 8f" is the Z-depen-
dent energy-independent high-energy-limit correc-
tion listed in Table 1. [ Note we are taking the energy
dependence of f'(w) as that given by f¢(w) rather
than that from the S-matrix calculations. This is due
to the strong energy dependence of scattering near
threshold, where fci(w) have used experimental
threshold energies.]

As mentioned earlier, E,.,/ mc” is an approximation
to the high-energy limit f'(c0) shown in Table 1. This
approximation is very good for low-Z atoms, but the
difference of E,,,/ mc’ from f'(c0) grows with increas-
ing Z, becoming 2% for Z =20, 6% for Z =40, 9%
for Z=60, 13% for Z =80, and 15% for Z =100.
Note that the definition of E, as given, for example,
by Cromer & Liberman is not simply the sum of the
individual orbital binding energies.

As a concrete example, consider the case of Ag
Ka, radiation (A =0-5593 A, how=22-16keV) scat-
tered by '*Si. The value fe, =0-042 is given by the
FPRIME code (Cromer & Liberman, 1970a; Cromer,
1983*) and from Table 1 we obtain the value &§f =
0-011 for Z=14. Thus the corrected relativistic
anomalous scattering factor is given by (3) as f'=
0-042+0-011=10-053. This value can be compared
with experimental values of 0-0545+0-003 (Deutsch

* The version of the FPRIME code described in Cromer (1983)
differs from the version described in Cromer & Liberman (1970a)
by the inclusion of an energy-dependent term due to Jensen (1979),
which is identified explicitly in the output produced by the code.
Our values listed in Table 1 do not include this ‘Jensen term’ and
users of the 1983 version of FPRIME must first remove the contri-
bution from the Jensen term before applying our correction 5f".
Generally, the contribution from this Jensen term should be
ignored.
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Table 3. Illustration of the importance of the high-energy correction 8f' on the differential cross section for
59-54 keV photons scattered by *’Pb

RFF indicates relativistic form factor only; RFF+CL indicates relativistic form factor plus anomalous-scattering factors of Cromer &
Liberman (19705, 1981) (f&, = —2-201, f&, = 1-304); RFF + CCL indicates relativistic form factor plus high-energy corrected anomalous-
scattering factors ( f&_+ 8f = —2:201+0-870 = —1-331, f¢, = 1-304); SM indicates S-matrix predictions; EXP indicates experiment. The
numbers in parentheses indicate the associated power of ten. In both cases the anomalous factors are taken as angle independent. Also,
x = A"'sin (@/2) where the scattering angle @ =20, 0 is the Bragg angle.

do/d (ri/sr)

0(®) x (A™YH f(q) RFF RFF+CL RFF+CCL SM EXP
0 0 82:000 6:72(3) 637 (3) 6-51(3) 649 (3)
206 0-859 34-378 111 (3) 9-73(2) 1:03 (3) 1-02(3) 1-03£0-10 (3)*
30 1-243 24-457 523(2) 4-35(2) 469 (2) 463 (2) 4-520-37 (2)*
45 1-838 16:487 2:04(2) 1-54(2) 1-74(2) 1-70(2) 1-66%0-16 (2)*
. . ) . 843088 (1)*
60 2:401 13185 1:09 (2) 7-65 (1) 889 (1) 863 (1) 2802035 (1)t
75 2:923 10-807 621 (1) 404 (1) 488(1) 474 (1) 4-86+0-18 (1)t
) . . . . . 2:77£0-25(1)*
90 3396 8876 3-94(1) 2:31(1) 2:93(1) 2:86 (1) 298£0.10 (1)t
105 3-810 7-495 3-00(1) 1-59 (1) 2-12(1) 2:09 (1) 2:22+0-08 (1)t
107 3-860 7-354 2:93(1) 1-53 (1) 2:06 (1) 2:03 (1) 2:09£0-21 (1)*
120 4159 6601 2:72(1) 1-32(1) 1-84(1) 1-81(1) 1-89+0-06 (1)t
135 4437 6-053 275 (1) 1-24(1) 1-80 (1) 1-75(1) 1-85+0-06 (1)1
150 4-639 5-726 2:87 (1) 1-24(1) 1-84(1) 1-76 (1) 1-79:£0-08 (1)
180 4-802 5502 303 (1) 1-26(1) 1:91(1) 1-81(1)

* Eichler & de Barros (1985).

+ Schumacher & Stoffregen (1977).

& Hart, 1988), 0-0537 +0-0025 (Deutsch & Hart,
1984), 0-060+0-003 (Creagh, 1984), and 0-0568 =
0:0026 (Cusatis & Hart, 1975). In this case, experi-
ment clearly distinguishes the corrected value of f’
from the uncorrected value computed by FPRIME.
The importance of this correction has also been illus-
trated for '*Si and ?°Ca, 6-22 keV by Smith (1987),
for '*Si, 5-40 keV by Deutsch & Hart (1988), and for
°F, 'Na, '*Si, '’Cl, 'K and *°Ca, 5-22 keV by Wang
& Chia (1988a). However, Deutsch & Hart (1988)
note residual differences between experiment and
corrected f' values of the order of 0-01 for '“Si at
energies higher than about 25keV (wavelengths
shorter than about 0-5 A).

While the anomalous-scattering factors are defined
at forward angle, it is even more important to correct
relativistic form-factor predictions at finite angles.
Although the anomalous-scattering factors have
angular dependence, it is not that given by the form
factors, total atom or subshell, as has sometimes been
previously speculated (e.g. Templeton, 1962). In com-
parison with our S-matrix predictions in the X-ray
regime, we find that for photon energies near and
below the K-shell photoeffect threshold it is better
to assume no angular dependence for f* and f” than
any model we have yet devised based on the form
factor. (However, see an alternative model based on
angle-independent quantities g’, g” discussed later in
a footnote.) For large-angle experiments near the
K-shell photoeffect thresholds of **Kr and **Xe
(Smend, Schaupp, Czerwinski, Schumacher,
Millhouse & Kissel, 1987), angle-independent
anomalous-scattering-factor predictions agreed at the

10% or better level with S-matrix predictions and
experiment. At the 10% or better level, it is expected
that angle-independent anomalous-scattering-factor
predictions will generally agree with S-matrix predic-
tions near and below the K-shell photoeffect thresh-
old. (At energies well above the K-shell photoeffect
threshold, the angular dependence of the anomalous-
scattering factors cannot be ignored since for larger
momentum transfers such factors will dominate the
form-factor term.) In this angle-independent approxi-
mation, the unpolarized elastic-scattering cross sec-
tion, differential in scattering angle ®@ (©® =20, where
0 is the Bragg angle), may be written as

2 (0,0) =2 (1+ o5 O)f(g) +1 () + if”(w)lz;)

where f(q) is the value of the relativistic form factor
(e.g. Hubbell & @verbg, 1979) at momentum transfer

hg=(2hw/c)sin (0/2). (5)

For forward angle, (4) gives the same result as that
given by (1). [Typically, form factors are tabulated
as a function of the variable x=2A""sin (©/2); x=
20-61 g, when x is in inverse dngstroms and g is in
mc units. Also, ro=e*/mc*=2-82x10""m; ri=
0-0794 x 1072 m*.] In Table 3 we compare finite-angle
predictions with experiment for scattering of 59-5 keV
photons by Pb. The relative importance of the correc-
tion 8f" generally becomes more important at finite
angles because we have taken 8f” as angle indepen-
dent and f(q) always decreases relative to f(0) with
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increasing g (i.e. increasing @). In extreme cases, the
anomalous-scattering factor f* can be of equal mag-
nitude, but opposite in sign to f(g), resulting in
complete cancellation (Kane, Basavaraju, Lad,
Varier, Kissel & Pratt, 1987).*

There are also consequences of the correction to
/' in the total cross section (integrated over angles),
sometimes greater than those for forward angles, as
the anomalous terms become more important away
from the forward direction. For 59-5keV photons
scattered by Pb, the total cross section is 2150 r2 (RFF
- relativistic form factor only), 1740 r2 (RFF+CL -
relativistic form factor with Cromer & Liberman
anomalous-scattering factors), and 1900 rj (RFF+
CCL - relativistic form factor with high-energy-
corrected Cromer & Liberman anomalous-scattering
factors). The RFF+ CCL result is in good agreement
with the S-matrix result of 1870 r2.

Other corrections

We note that other corrections to the Cromer-
Liberman tables may be needed in some circum-
stances. For example, as discussed by Wang & Pratt
(1983), ignoring the contribution of bound-bound
transitions can cause errors for carbon and other light
elements. This problem becomes more serious for
ions, where more bound-bound transitions are
allowed. On the other hand, the Cromer-Liberman
tabulation imposes experimental threshold positions
and is consequently more accurate near threshold
than S-matrix calculations in potential models which
do not well reproduce threshold positions, since f is
generally rapidly varying near threshold. In some
cases, solid-state effects will be important (Wang &
Chia, 1988b). In other cases, details in the choice of
the atomic model should be observable (Kissel &
Pratt, 1987, Wang & Chia, 1988c). Finally, strong
anisotropy has been observed in anomalous scattering
near atomic thresholds due to orientation of an atom
in a molecule (e.g. Templeton & Templeton, 1988).
In their analysis, Templeton & Templeton found it
necessary to generalize the anomalous-scattering fac-
tors ' and f” from scalars to tensors.

We gratefully acknowledge the contribution of
Peter Rullhusen, who provided us with modified

* Similar to the 8f that we defined for use with the relativistic
form factor f(q), we can also define a correction factor 8g’ for use
with the modified relativistic form factor g(gq) (e.g. Schaupp et al.,
1983). Instead of the quantity f(q)+f'(w)+if"(w) in (4), we can
substitute the quantity g(q)+g'(w)+ig"(w), where g'(w)=
Se(w)+8g’, and g"(w) =f¢ (w). To the extent that g(0) does in
fact have the correct high-energy limit, then g’ = —f¢, () (e.g.
Smend et al., 1987). For forward scattering the two formalisms are
identical. At finite angle it may be somewhat better to assume that
g’, g" are angle independent rather than f*, f7, though the numerical
data do not fully support either assumption.
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form-factor values at a higher accuracy than those
published. This work has benefited from conversa-
tions with Mihai Gavrila. This work has been sup-
ported in part by the US Department of Energy under
contract DE-AC04-76DP00789, and in part by the
National Science Foundation under grant no.
PHY87-04088.
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Abstract

Any wide-angle X-ray scattering (WAXS) peak, rel-
evant to a powder sample of crystallites with negli-
gible internal disorder, is the Fourier transform of
the so-called oriented stick probability function
(oSPF) of the filled part of the sample, with the stick
orientated along the reflexion direction. From this
observation the following consequences are obtained:
the correlation function used in small-angle X-ray
scattering (SAXS) is the average of the former oSPF’s
over all possible stick orientations; any peak profile
asymptotically vanishes as S,h~%, where S, is the
(specific) area of the interphase surface presented by
the sample along the reflexion direction; oscillatory
deviations, behaving as S, cos (hL)h™2, are present
only when a subset (having area S, ) of the interface,
after having been translated by L along the reflexion
direction, superposes on itself; the angularity of the
interphase surface can be measured by a natural
modification of the Porod integral relation. For
samples really isotropic, the above quantities should
not depend on the reflexion direction and thus they
should be equal to those measured by SAXS experi-
ments. These results are applied to three ideal
isotropic powder samples made up, respectively, of
monodisperse spherical, cubic and cylindrical crystal-
lites as well as to the analysis of two WAXS peaks
diffracted by two real samples of zirconia powders.

I. Introduction

The aim of this paper is to point out that many of
the ideas used for analysing the asymptotic behaviour
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des Solides, Batiment 510, 91405 Orsay CEDEX, France.
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of small-angle X-ray scattered intensities (SAXS) can
be usefully applied, mutatis mutandis, in the realm
of wide-angle scattering (WAXS) in order to assess
the behaviour of the peak intensities in the tail
regions. Although the practical application of this
method suffers two serious limitations, i.e. the powder
samples must be made up of crystallites with negli-
gible internal disorder and the measured WAXS
peaks must not fall so close to each other as to make
the observation of an asymptotic tail region imposs-
ible, the results of our analysis are interesting for two
reasons: they allow one to appreciate the geometrical
implications hidden in the functional forms usually
assumed in best-fitting observed peaks and to unify
the procedures used in interpreting small- and wide-
angle experimental results.

The plan of the paper is the following. In the next
section (§ II), the general theoretical expressions on
which our analysis is based as well as the conditions
for the samples we shall deal with will be written
down. In § II1, we shall discuss in detail the relation-
ship between the WAXS peak profiles and the so-
called oriented stick probability functions (oSPF).
We also show how to obtain along the way the SAXS
idealization of a sample. It turns out that the SAXS
intensity is essentially the 000 WAXS reflexion and
that the corresponding correlation function is the
angular average of the aforesaid oSPF’s. In this way
it becomes clear that many of the techniques used for
analysing SAXS intensities can be applied also to
WAXS profiles. In § IV, some recent theoretical
results relating the continuity properties of the deriva-
tives of the oSPF’s to some geometrical features of
the crystallite boundaries will be recalled, while in
§ V we show how these continuity properties deter-
mine the asymptotic behaviour of WAXS profiles.
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